text extraction

Parsing Dict object from text file (More…)

I have modified the DictParser ,mentioned in previous blog, to handle object parsing. Previous version of DictParser can only handle basic data type, whereas in this version, user can pass a dict of objects for the DictParser to identify and it will replace those variables marked with ‘@’, treating them as objects.

An illustration is as below. Note the “second” key has an object @a included in the value list. This will be subsequently substitute by [1,3,4] after parsing.

## Text file
$first
aa:bbb,cccc,1,2,3
1:1,bbb,cccc,1,2,3

$second
ee:bbb,cccc,1,2,3
2:1,bbb,@a,1,2,3  
## end of file

The output from DictParser are as followed:

p = DictParser(temp_working_file, {'a':[1,3,4]}) #pass in a dict with obj def
p.parse_the_full_dict()
print p.dict_of_dict_obj
>>> {'second': {'ee': ['bbb', 'cccc', 1, 2, 3], 2: [1, 'bbb', [1, 3, 4], 1, 2, 3]},
'first': {'aa': ['bbb', 'cccc', 1, 2, 3], 1: [1, 'bbb', 'cccc', 1, 2, 3]}}

If the object is not available or not pass to DictParser, it will be treated as string.

Using the ‘@’ to denote the object is inspired by the Julia programming language where $xxx is used to substitute objects during printing.

Parsing Dict object from text file (Updates)

I have been using the DictParser created as mentioned in previous blog in a recent project to create a setting file for various users. In the project, different users need to have different settings such as parameter filepath.

The setting file created will use the computer name to segregate the different users. By creating a text file (with Dict Parser) based on the different computer names, it is easy to get separate setting parameters for different users. Sample of the setting file are as below.

## Text file
$USER1_COM_NAME
#setting_comment_out:r'c:\data\temp\bbb.txt'
setting2:r'c:\data\temp\ccc.txt'

$USER2_COM_NAME
setting:r'c:\data\temp\eee.txt'
2:1,bbb,cccc,1,2,3
## end of file

The output from DictParser are as followed:

## python output as one dict containing two dicts with different user'USER1_COM_NAME' and 'USER2_COM_NAME'
>> {'USER1_COM_NAME': {'setting2': ['c:\\data\\temp\\ccc.txt']}, 'USER2_COM_NAME': {2: [1, 'bbb', 'cccc', 1, 2, 3], 'setting': ['c:\\data\\temp\\eee.txt']}}

User can use the command “os.environ[‘ComputerName’]” to get the corresponding setting filepath.

I realized that the output format is somewhat similar to json format. This parser is more restrictive in uses hence has some advantage over json in less punctuations (‘{‘, ‘\’) etc and able to comment out certain lines.

Extracting portions of text from text file

I was trying to read the full book of abstracts from a conference earlier and finding it tedious to copy portions of desired paragraphs for my summary report to be fed into my simple auto-summarized module.

I came up with the following script that allows users to put a specific symbol such as “@” at the start and end of the paragraph to mark those paragraphs or sentences to be extracted. More than one portion can be selected and they can be returned as a list for further processing. For my case, each of the paragraph outputted will be auto summarized.

The following diagram illustrated the two different kinds of extraction.

Illustration of extraction type

The script scans all the lines of the text file, looking for the key_symbol (“@” in this case) and marks the index of the selected lines. The present method only use string “startwith” function. It can be expanded to be using regular expression.

Depending on the mode (overlapping or non-overlapping), it will calculate the portion of the text to be selected and output as a list which can be use for further processing.

Script can be found here.