Simple technical analysis for stocks can be performed using the python pandas module with graphical display. Example of basic analysis including simple moving averages, Moving Average Convergence Divergence (MACD) and Bollinger bands and width.
For the tech analysis to be performed, daily prices need to be collected for each stock. The Yahoo Finance API can retrieve the required data. The previous post described the method to link the YF API to python. After the historical prices are retrieved, the method for getting the various technical analysis can be easily done using the Pandas rolling mean method and plots can be done using Pandas plot function and additional help from Matplotlib.
Below is snippet of the script that initialize the hist data pulling and display the Bollinger Bands and Bollinger Width for a particular stock (Keppel Corp: BN4.SI).
import os, re, sys, time, datetime, copy, shutil import pandas from yahoo_finance_historical_data_extract import YFHistDataExtr import matplotlib.pyplot as plt if __name__ == '__main__': data_ext = YFHistDataExtr() data_ext.set_interval_to_retrieve(200)#in days data_ext.set_multiple_stock_list(['BN4.SI']) data_ext.get_hist_data_of_all_target_stocks() # convert the date column to date object data_ext.all_stock_df['Date'] = pandas.to_datetime( data_ext.all_stock_df['Date']) temp_data_set = data_ext.all_stock_df.sort('Date',ascending = True ) #sort to calculate the rolling mean temp_data_set['20d_ma'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=20) temp_data_set['50d_ma'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=50) temp_data_set['Bol_upper'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=20) + 2* pandas.rolling_std(temp_data_set['Adj Close'], 20, min_periods=20) temp_data_set['Bol_lower'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=20) - 2* pandas.rolling_std(temp_data_set['Adj Close'], 20, min_periods=20) temp_data_set['Bol_BW'] = ((temp_data_set['Bol_upper'] - temp_data_set['Bol_lower'])/temp_data_set['20d_ma'])*100 temp_data_set['Bol_BW_200MA'] = pandas.rolling_mean(temp_data_set['Bol_BW'], window=50)#cant get the 200 daa temp_data_set['Bol_BW_200MA'] = temp_data_set['Bol_BW_200MA'].fillna(method='backfill')##?? ,may not be good temp_data_set['20d_exma'] = pandas.ewma(temp_data_set['Adj Close'], span=20) temp_data_set['50d_exma'] = pandas.ewma(temp_data_set['Adj Close'], span=50) data_ext.all_stock_df = temp_data_set.sort('Date',ascending = False ) #revese back to original data_ext.all_stock_df.plot(x='Date', y=['Adj Close','20d_ma','50d_ma','Bol_upper','Bol_lower' ]) data_ext.all_stock_df.plot(x='Date', y=['Bol_BW','Bol_BW_200MA' ]) plt.show()
Do you have lines of code that does MACD?
Hi Yoda,
Yes. You can refer to this section of the code (line 143) :
def add_MACD_parm(self):
“”” Include the MACD parm.
“””
temp_data_set = self.histdata_indiv_stock.sort(‘Date’,ascending = True )
temp_data_set[’12d_exma’] = pandas.ewma(temp_data_set[‘Adj Close’], span=12)
temp_data_set[’26d_exma’] = pandas.ewma(temp_data_set[‘Adj Close’], span=26)
temp_data_set[‘MACD’] = temp_data_set[’12d_exma’] – temp_data_set[’26d_exma’] #12-26
temp_data_set[‘MACD_signalline’] = pandas.rolling_mean(temp_data_set[‘MACD’], window=9)
temp_data_set[‘MACD_hist’] = temp_data_set[‘MACD’] – temp_data_set[‘MACD_signalline’]
self.histdata_indiv_stock = temp_data_set.sort(‘Date’,ascending = False ) #revese back to original
I suddenly discover I did not include the Git post. All the codes are avaliable at Git hub: https://github.com/spidezad/yahoo_finance_data_extract. You can get the code from corresponding python module “Stock Tech Analysis.py” found in the url.
This is really helpful! Thanks!