Basic Stock Technical Analysis with python

Simple technical analysis for stocks can be performed using the python pandas module with graphical display. Example of  basic analysis including simple moving averages, Moving Average Convergence Divergence (MACD) and Bollinger bands and width.

For the tech analysis to be performed, daily prices need to be collected for each stock. The Yahoo Finance API can retrieve the required data. The previous post described the method to link the YF API to python. After the historical prices are retrieved, the method for getting the various technical analysis can be easily done using the Pandas rolling mean method and plots can be done using Pandas plot function and additional help from Matplotlib.

Below is snippet of the script that initialize the hist data pulling and display the Bollinger Bands and Bollinger Width for a particular stock (Keppel Corp: BN4.SI).

import os, re, sys, time, datetime, copy, shutil
import pandas
from yahoo_finance_historical_data_extract import YFHistDataExtr
import matplotlib.pyplot as plt

if __name__ == '__main__':
        data_ext = YFHistDataExtr()
        data_ext.set_interval_to_retrieve(200)#in days
        data_ext.set_multiple_stock_list(['BN4.SI'])
        data_ext.get_hist_data_of_all_target_stocks()
        # convert the date column to date object
        data_ext.all_stock_df['Date'] =  pandas.to_datetime( data_ext.all_stock_df['Date'])
        temp_data_set = data_ext.all_stock_df.sort('Date',ascending = True ) #sort to calculate the rolling mean
       
        temp_data_set['20d_ma'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=20)
        temp_data_set['50d_ma'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=50)
        temp_data_set['Bol_upper'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=20) + 2* pandas.rolling_std(temp_data_set['Adj Close'], 20, min_periods=20)
        temp_data_set['Bol_lower'] = pandas.rolling_mean(temp_data_set['Adj Close'], window=20) - 2* pandas.rolling_std(temp_data_set['Adj Close'], 20, min_periods=20)
        temp_data_set['Bol_BW'] = ((temp_data_set['Bol_upper'] - temp_data_set['Bol_lower'])/temp_data_set['20d_ma'])*100
        temp_data_set['Bol_BW_200MA'] = pandas.rolling_mean(temp_data_set['Bol_BW'], window=50)#cant get the 200 daa
        temp_data_set['Bol_BW_200MA'] = temp_data_set['Bol_BW_200MA'].fillna(method='backfill')##?? ,may not be good
        temp_data_set['20d_exma'] = pandas.ewma(temp_data_set['Adj Close'], span=20)
        temp_data_set['50d_exma'] = pandas.ewma(temp_data_set['Adj Close'], span=50)
        data_ext.all_stock_df = temp_data_set.sort('Date',ascending = False ) #revese back to original
        
        data_ext.all_stock_df.plot(x='Date', y=['Adj Close','20d_ma','50d_ma','Bol_upper','Bol_lower' ])
        data_ext.all_stock_df.plot(x='Date', y=['Bol_BW','Bol_BW_200MA' ])
        plt.show()

Bollinger Band of BN4

Advertisement

5 comments

    1. Hi Yoda,

      Yes. You can refer to this section of the code (line 143) :

      def add_MACD_parm(self):
      “”” Include the MACD parm.
      “””
      temp_data_set = self.histdata_indiv_stock.sort(‘Date’,ascending = True )

      temp_data_set[’12d_exma’] = pandas.ewma(temp_data_set[‘Adj Close’], span=12)
      temp_data_set[’26d_exma’] = pandas.ewma(temp_data_set[‘Adj Close’], span=26)
      temp_data_set[‘MACD’] = temp_data_set[’12d_exma’] – temp_data_set[’26d_exma’] #12-26
      temp_data_set[‘MACD_signalline’] = pandas.rolling_mean(temp_data_set[‘MACD’], window=9)
      temp_data_set[‘MACD_hist’] = temp_data_set[‘MACD’] – temp_data_set[‘MACD_signalline’]

      self.histdata_indiv_stock = temp_data_set.sort(‘Date’,ascending = False ) #revese back to original

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s